Special bearings

Bearing Designation: PLC 04-30

Dimensions (mm):
- d: 20
- D: 51
- B: 15
- C: -
- R: -
- r_s min: 1.1
- r_f min: -

Basic Load Rating (kN):
- C: 16,000
- C_0: 7,940

Weight [kg]: 0.126

Limiting Speed for Lubrication (min⁻¹):
- Grease: 14000
- Oil: 17000
Tolerance Symbols and Their Meaning

- \(d \): nominal bore diameter
- \(d_a \): nominal diameter of larger theoretical tapered bore diameter
- \(d_{\text{a}} \): nominal diameter of the shaft washer of double direction thrust bearings
- \(\Delta_{a} \): deviation of single bore diameter from nominal
- \(\Delta_{a_{\text{brp}}} \): mean cylindrical bore diameter deviation in single radial plane (for tapered bore \(\Delta_{a_{\text{brp}}} \) is valid for theoretical bore diameter)
- \(\Delta_{a_{\text{irp}}} \): deviation of mean larger theoretical diameter of tapered bore
- \(\Delta_{a_{\text{irp}}} \): mean shaft washer bore diameter deviation of double direction thrust bearings in single radial plane
- \(V_{a_{\text{irp}}} \): single bore diameter variation in single radial plane
- \(V_{a_{\text{irp}}} \): mean cylindrical bore diameter variation
- \(V_{a_{\text{irp}}} \): shaft washer bore diameter variation of double direction thrust bearings in single radial plane
- \(D \): nominal outside diameter
- \(\Delta_{s} \): deviation of single outside diameter from the nominal dimension
- \(\Delta_{s_{\text{brp}}} \): mean outside cylindrical surface diameter deviation in single plane
- \(V_{s_{\text{irp}}} \): single outside cylindrical surface diameter variation in single radial plane
- \(V_{s_{\text{irp}}} \): mean outside cylindrical surface diameter variation
- \(B \): inner ring nominal width
- \(T \): total nominal width of tapered roller bearings
- \(T_{a_{\text{irp}}} \): nominal effective width of cup sub-unit
- \(T_{a_{\text{irp}}} \): nominal effective width of cone sub-unit
- \(H \): rated width of unidirectional axial bearing
- \(H_{a_{\text{irp}}} \): rated height of unidirectional ball axial bearing including the body ring
- \(H_{a_{\text{irp}}} \): rated height of bidirectional axial bearing
- \(H_{a_{\text{irp}}} \): rated height of bidirectional axial ball bearing including body rings
- \(H_{a_{\text{irp}}} \): rated height of spherical-roller bearing
- \(\Delta_{a_{\text{irp}}} \): inner ring single width deviation
- \(\Delta_{a_{\text{irp}}} \): outer ring single width deviation
- \(\Delta_{a_{\text{irp}}} \): bearing single width deviation (total)
- \(\Delta_{a_{\text{irp}}} \): cone sub-unit effective width deviation
- \(\Delta_{a_{\text{irp}}} \): cup sub-unit effective width deviation
- \(\Delta_{a_{\text{irp}}} \): height deviation of single direction axial ball bearings from nominal value
- \(\Delta_{a_{\text{irp}}} \): height deviation of single direction axial ball bearings with spheroid housing washer from nominal value
- \(\Delta_{a_{\text{irp}}} \): height deviation of double direction axial ball bearings from nominal value
- \(\Delta_{a_{\text{irp}}} \): height deviation of double direction axial ball bearings with spheroid housing washer from nominal value
- \(\Delta_{a_{\text{irp}}} \): height deviation of axial spherical-roller bearing from the rated value
- \(C \): outer ring nominal width
- \(C_{a_{\text{irp}}} \): inner ring single width variation
- \(C_{a_{\text{irp}}} \): outer ring single width variation
- \(C_{a_{\text{irp}}} \): radial runout of assembled bearing inner ring
- \(S \): radial runout of assembled bearing outer ring
- \(S_{a_{\text{irp}}} \): shaft washer raceway axial runout
- \(S_{a_{\text{irp}}} \): housing washer raceway axial runout
- \(S_{a_{\text{irp}}} \): inner ring flat seat face axial runout of assembled bearing
- \(S_{a_{\text{irp}}} \): outer ring flat seat face axial runout of assembled bearing
- \(S_{a_{\text{irp}}} \): flat seat face axial runout
- \(S_{a_{\text{irp}}} \): runout of outside cylindrical surface towards outer ring face
- \(S_{a_{\text{irp}}} \): runout of supporting face towards seat face for single row tapered roller bearings