Single row cylindrical roller bearings

Bearing Designation		NF1072M							
Dimensions (m		Abutme	nm)						
d	36	0		F _w		378		D _a max	5
D	54	0		E _w		400		D _a min	4
В	82	2		d _a miı	n	522		r _a max	
r _s min	5			d _a ma	ıx	410		r _b max	
r _{1s} min	5							b	
Basic Load Rat			Limiting	g Speed	n (mi	n ⁻¹)			
С	1109	9,74		Grease	9			1300	
C ₀	1826	6,55		Oil	Oil			1600	
				Angle	Ring			-	
Weight [kg]		68,5	50	Weig	ht - K	[kg]		-	

Tolerance Class

	Inner Ring											
	Cylindrical Bore											
Tolerance				V_{dp}								
	$\Delta_{ extsf{dmp}}$			Diameter Serie	s	$V_{ m dmp}$	K _{ia}	Δ_{B_S}		V_{B_s}		
Class			7,8,9	7,8,9 0,1 2,3,4								
	max	min	max	max	max	max	max	max	min	max		
	μт											
P0	0	-40	50	50	30	30	60	0	-400	40		
P6	0	-30	38	38	23	23	30	0	-400	40		

	Inner Ring											
Tolerance Class		Та	pered Bore	1:12		Tapered Bore 1:30						
	Δ_{dmp}		$\Delta_{ extsf{d1mp}} - \Delta_{ extsf{dmp}}$		V _{dp}	$\Delta_{ extsf{dmp}}$		$\Delta_{ m d1mp} - \Delta_{ m dmp}$		V _{dp}		
	max	min	max	min	max	max	min	max	min	max		
	μm											
P0	57	0	57	0	50	40	0	57	0	57		

	Outer Ring											
Tolerance Class				\	√ _{Dp}							
	Δ _{Dmp}			iameter Serie	es .	bearings 2)	V Dmp	K _{ea}				
			7,8,9	0,1	2,3,4	with seals			$\Delta_{CS,}$ V_{CS}			
			max	max	max	max	max	max				
	μт											
P0	0	-50	63	63	38	-	38	100	Corresponds to $\Delta_{\rm BS,}$ $\rm V_{\rm BS}$			
P6	0	-38	48	48	29	-	29	50	of the same bearing inner ring			

¹⁾ Valid in any bore radial plane

Radial Clearance - Cylindrical Bore

C2		nor	mal	С	3	С	4	C	C5			
min	max	min	max	min max		min	max	min	max			
	μт											
100	190	190	280	280	370	370	460	510	600			

²⁾ P0 - Valid only for bearings in diameter series 2, 3 and 4 * P6 - Valid only for bearings in diameter series 0, 1, 2, 3 and 4

Tolerance Symbols and Their Meaning

- nominal bore diameter d
- nominal diameter of larger theoretical tapered bore diameter d.
- d, nominal diameter of the shaft washer of double direction thrust bearings
- Δ_{ds} deviation of single bore diameter from nominal
- mean cylindrical bore diameter deviation in single radial plane
- (for tapered bore Δ_{dmp} is valid for theoretical bore diameter) deviation of mean larger theoretical diameter of tapered bore $\Delta_{\rm d2mp}^{\rm dilmp}$ mean shaft washer bore diameter deviation of double direction thrust bearings in single radial plane
- single bore diameter variation in single radial plane
- mean cylindrical bore diameter variation
- $V_{dmp} \ V_{d2p}$ shaft washer bore diameter variation of double direction thrust bearings in single radial plane
- nominal outside diameter D
- $\boldsymbol{\Delta}_{\!\scriptscriptstyle Ds}$ deviation of single outside diameter from the nominal dimension mean outside cylindrical surface diameter deviation in single Δ_{Dmp}
- V_{Dp} single outside cylindrical surface diameter variation in single radial plane
- mean outside cylindrical surface diameter variation
- inner ring nominal width В
- Т total nominal width of tapered roller bearings
- nominal effective width of cup sub-unit
- nominal effective width of cone sub-unit
- rated width of unidrectional axial bearing
- Η, rated height of unidirectional ball axial bearing including the
- rated height of bidirectional axial bearing
- rated height of bidirectional axial ball bearing including body rinas

- rated height of spherical-roller bearing
- inner ring single width deviation
- outer ring single width deviation
- bearing single width deviation (total)
- cone sub-unit effective width deviation
- cup sub-unit effective width deviation
- height deviation of single direction axial bearings from nominal
- height deviation of single direction axial ball bearings with sphered housing washer from nominal value
- $\boldsymbol{\Delta}_{H2s}$ height deviation of double direction axial bearings from nominal value
- height deviation of double direction axial ball bearings with sphered housing washer from nominal value
- height deviation of axial spherical-roller bearing from the rated value
- С outer ring nominal width
- inner ring single width variation
 - outer ring single width variation
- radial runout of assembled bearing inner ring
- radial runout of assembled bearing outer ring
- shaft washer raceway axial runout
- housing washer raceway axial runout
- inner ring flat seat face axial runout of assembled bearing
 - outer ring flat seat face axial runout of assembled bearing
- flat seat face axial runout
- runout of outside cylindrical surface towards outer ring face
 - runout of supporting face towards seat face for single row